If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20z^2+13z-15=0
a = 20; b = 13; c = -15;
Δ = b2-4ac
Δ = 132-4·20·(-15)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-37}{2*20}=\frac{-50}{40} =-1+1/4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+37}{2*20}=\frac{24}{40} =3/5 $
| (-2,K)(2,0);m=-1 | | 15z^2-28z+12=0 | | -7u+4(u+6)=21 | | x+1÷2=-7 | | F(x)=|x|+2 | | 5x+2.3+2x=-1.8-3x | | 4x+7=15=2x | | (4/12)=(x/84) | | 2(4y-6)=y-13 | | (2x-9)/4=2+x/12 | | F(x)=x3-10x-5 | | 5(x - 4) = 3x +2 | | 0.3^x=293x+4362 | | -6x+2(5(x+1)+8=38) | | -2y-4=-24 | | -6x+2(5(x+1)+8=38 | | -6x+2(5(x+1)+80=38 | | 14-x=x-14 | | 12^-4x=8 | | 1/2x-1=3/4x+4 | | 3x/3-33=3x-699 | | u/2=52 | | 24/1+x=10/x-0.75 | | 50x+400=1000 | | 2x+x/2=84 | | M3=5x+21 | | (x-10)^2-48=0 | | 4x+52=19x+22 | | 0=10x^2+30x | | .15x+27=84 | | 3/5r=12 | | 5x+65+11x-65=180 |